Generalized descent patterns in permutations and associated Hopf algebras

نویسندگان

  • Jean-Christophe Novelli
  • Christophe Reutenauer
  • Jean-Yves Thibon
چکیده

Descents in permutations or words are defined from the relative position of two consecutive letters. We investigate a statistic involving patterns of k consecutive letters, and show that it leads to Hopf algebras generalizing noncom-mutative symmetric functions and quasi-symmetric functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions

Abstract. We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labelled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products Γ ≀ Sn and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf ...

متن کامل

Combinatorial Hopf Algebras, Noncommutative Hall-littlewood Functions, and Permutation Tableaux

We introduce a new family of noncommutative analogs of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explici...

متن کامل

J ul 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX

We introduce a new family of noncommutative analogues of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an expli...

متن کامل

Free Quasi-symmetric Functions of Arbitrary Level

We introduce analogues of the Hopf algebra of Free quasi-symmetric functions with bases labelled by colored permutations. As applications, we recover in a simple way the descent algebras associated with wreath products Γ ≀ Sn and the corresponding generalizations of quasi-symmetric functions. Finally, we obtain Hopf algebras of colored parking functions, colored non-crossing partitions and park...

متن کامل

ar X iv : 0 80 4 . 09 95 v 3 [ m at h . C O ] 3 J un 2 00 9 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX

We introduce a new family of noncommutative analogues of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an expli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011